

¹H, ¹³C and ¹⁵N NMR Spectra of the Reaction Product of Benzenediazonium Fluoroborates with 1-Phenyl-3-methyl-4- $(\alpha$ -acet-ethylidene)-pyrazol-5-one

A. Lyčka^a & H. Mustroph^b

^aResearch Institute of Organic Syntheses, CZ-532 18, Pardubice-Rybitví, Czech Republic ^bFEW Forschungs- and Entwicklungsgesellschaft Wolfen mbH, Industriepark Wolfen-Thalheim, PO Box 1340, D-06756, Wolfen, Germany

(Received 19 June 1996; accepted 18 July 1996)

ABSTRACT

Contrary to previously published data (Mustroph and Bach, Z. Chem, 1985), we have found that the reaction product of 4-X-benzenediazonium fluoroborates (X = H, NO_2) with 1-phenyl-3-methyl-4-(α -acet-ethylidene)-pyrazol-5-one corresponds to 5'-hydroxy-5,5'-dimethyl-2-phenyl-1'-(4-X-phenyl)-1',5'-dihydro-2H-[4,4']bipyrazolylidene-3-ones (4a,b) and not to compounds 3. The structural elucidation is based on analysis of 1H , ^{13}C and ^{15}N NMR spectra of non- and ^{15}N -selectively labelled samples. © 1997 Elsevier Science Ltd

Keywords: 5'-Hydroxy-5,5'-dimethyl-2-phenyl-1'-phenyl-1,5'-dihydro-2H-[4,4']bipyrazolylidene-3-ones, ¹H NMR, ¹³C NMR, ¹⁵N NMR.

INTRODUCTION

In 1985, Mustroph and Bach [1] reported the preparation and absorption spectra of the reaction product of benzenediazonium fluoroborates (1) with 1-phenyl-3-methyl-4-(α-acet-ethylidene)-pyrazol-5-one (2). It was expected that the structure of these products corresponds to compounds 3 (Scheme 1). These compounds would be interesting models in which azo-hydrazone tautomerism can exist. In hydrazone forms, expected by the authors of the paper [1], there are two possibilities of the existence of either seven-membered or eight-membered rings due to hydrogen bonding. The aim of this paper was to measure and analyse ¹H, ¹³C and ¹⁵N NMR spectra of nonand the ¹⁵N selectively labelled reaction products of benzenediazonium

fluoroborate (1a) and 4-nitrobenzediazonium fluoroborate (1b) with 1-phenyl-3-methyl-4-(α -acet-ethylidene)-pyrazol-5-one (2).

$$H_2C$$
 $COCH_3$
 CH_3OH
 $CH_$

RESULTS AND DISCUSSION

¹H, ¹³C and ¹⁵N NMR spectra of the reaction product of benzenediazonium fluoroborate (**1a**) or 4-nitrobenzenediazonium fluoroborate (**1b**) with 1-phenyl-3-methyl-4-(α-acet-ethylidene)-pyrazol-5-one (**2**) were measured and analysed. Two-dimensional NMR spectra [2] were used with the aim of assigning proton and carbon chemical shifts unambiguously. H,H-COSY (homonuclear chemical shift correlation spectroscopy), NOESY (two-dimensional nuclear Overhauser effect spectroscopy) and H,C-COSY [3] were applied. The results are collected in Tables 1 and 2.

Contrary to the previously published data [1], we have found that the reaction product of benzenediazonium fluoroborate corresponds to 5'-hydroxy-5,5'-dimethyl-2,1'-diphenyl-1',5'-dihydro-2H-[4,4']bipyrazolylidene-3-one (4a, X = H) for the following reasons:

The proton NMR spectrum consists of signals of two phenyl rings, two methyl groups, =CH- and an acidic proton resonating at 8.31 ppm only. In the 13 C NMR spectrum, there is no signal of the carbonyl group from COCH₃, the $\delta(^{13}$ C) of which could be expected at ca. 200 ppm. Nitrogen-15 chemical shifts are relatively very close to those in compound 5 [4] in deuteriochloroform ($\delta(^{15}N_1) = -75.3$, $\delta(^{15}N_2) = -191.5$, $\delta(^{15}N_{1'}) = -205.6$, $J(^{15}N_{1'},H) = 96.3$ Hz [5], $\delta(^{15}N_{2'}) = -18.9$) but the coupling constant, $J(^{15}N_{1'},H) = 5.1$ Hz, is apparent only in the reaction products. These experimental data are not consistent with the structure 3 (Scheme 1).

The NOESY [6] spectrum (Fig. 1) provides the key pieces of information. The most important through-space proximity of protons are shown in formula 6.

The structure 4 allows us to explain all above-mentioned 'discrepancies'. As is apparent from the structure, there is no COCH₃ group in the molecule.

TABLE 1					
1 H, 13 C and 15 N Chemical Shifts and $J(^{15}$ N,X) Coupling Constants (Hz \pm 0.3 Hz), and					
NOESY Correlations for Compound 4a in Deuteriochloroform					

	$\delta(^1H)$	$\delta(^{15}N)/\delta(^{13}C)$	$J(^{15}N(I'),^{13}C)$	$J(^{15}N(1'),H)$	NOESY
N-1		-72.1			
N-2		-189.7			
C-3		165.71			
C-4		115.22			
C-5		148.32			
C-6		137.86			
C-7	7.86	119.46			H(7)/H(8)
C-8	7.41	128.86			H(8)/H(7)
					H(8)/H(9)
C-9	7.21	125.56			H(9)/H(8)
C-10	2.42	16.77			H(10)/H(3')
N-1'		-180.2^{a}			
N-2'		-1.5^{a}			
C-3'	7.56	130.98	1.4	$12.4; 6.6^{b}$	H(3')/H(10)
C-4'	_	162.49			
C-5'	_	98.37			
C-6'		139.73	5.3		
C-7'	7.71	117.89	2.7		H(7')/H(8')
					H(7')/H(10')
C-8′	7.38	129.19			H(8')/H(7')
					H(8')/H(9')
C-9'	7.17	125.02			H(9')/H(8')
C-10'	1.91	24.58		2.2	H(10')/OH
					H(7')/H(10')
ОН	8.31	_		5.1	OH/H(10')

 $^{^{}a-1}J(^{15}N(1'),^{15}N(2')) = 12.8 \text{ Hz}.$

 $J(^{15}N_{1'},H)$ is small because the acidic proton is not directly bonded to nitrogen $N_{1'}$. $\delta(^{1}H)$ of the hydroxy group is 8.31 ppm ($\delta(NH/OH)$) is typically in the region of 13–17 ppm in the hydrazone forms of azo dyes [5]) because the hydroxy group is bonded to an sp³ carbon and, due to reasons of geometry, the hydrogen bonding (if any) is very weak.

Analogous ${}^{1}H$ and ${}^{13}C$ NMR measurements were used in the analysis of the reaction product of 4-nitrobenzenediazonium fluoroborate. ${}^{1}H$ and ${}^{13}C$ NMR data observed (Table 2) are in agreement with the proposed structure 4b (X = NO₂).

The empirical formulae of compounds 3 and 4 are the same and, therefore, the reaction products cannot be differentiated using elemental analysis data or the m/e value in the mass spectrum. A possible reaction pathway consists of formation of compound 3 followed by nucleophilic attack of nitrogen on the carbonyl group and proton transfer.

 $^{^{}b}$ $^{3}J(^{15}N(2'),^{1}H).$

	$\delta(^1H)$	$\delta(^{13}\mathrm{C})$
C-3	<u>—</u>	165.21
C-4		118.31
C-5		148.12
C-6	_	137.37
C-7	7.88	119.39
C-8	7.43	128.96
C-9	7.24	125.96
C-10	2.45	16.81
C-3'	7.71	133.38
C-4'	_	160.63
C-5'	_	97.21
C-6'	_	144.27
C-7'	7.79	116.21
C-8'	8.24	125.31
C-9'		143.25
C-10'	1.98	23.96
ОН	8.13	

TABLE 2

¹H and ¹³C Chemical Shifts in Compound 4b in Deuteriochloroform

EXPERIMENTAL

The compounds 5'-hydroxy-5,5'-dimethyl-2,1'-diphenyl-1',5'-dihydro-2*H*-(4,4')bipyrazolylidene-3-one (**4a**) and 5'-hydroxy-5,5'-dimethyl-2-phenyl-1'-(4-nitrophenyl)-1',5'-dihydro-2*H*-[4,4']bipyrazolylidene-3-one (**4b**) were prepared as reported previously.[1]

The $^{15}N_{1'}$ (20% ^{15}N) and $^{15}N_{2'}$ (95% ^{15}N) doubly labelled isotopomer of **4a** was prepared analogously using aniline- ^{15}N (20% ^{15}N) and Na $^{15}NO_2$ (95% ^{15}N), respectively.

The ¹H NMR (360.13 MHz), ¹³C NMR (90.566 MHz) and ¹⁵N NMR (36.501 MHz) spectra of compounds 4 dissolved in deuteriochloroform were recorded at 300 K on a Bruker AMX 360 spectrometer equipped with 5 mm broadband probe and X32 computer using the UXNMR software (Version 940501.3). ¹H and ¹³C chemical shifts were referred to internal tetramethylsilane ($\delta = 0.00$). One-dimensional ¹⁵N NMR spectra were measured in 5 mm NMR tubes with 64 K data points and a spectral width of 11 100 Hz using the non-refocused INEPT (insensitive nuclei enhanced by polarisation transfer)[8] technique optimised for $J(^{15}N.H) = 10$ and 5 Hz, respectively. Nitrogen-15 chemical shifts were referred to external nitromethane ($\delta = 0.0$) placed in a coaxial capillary.

Positive values of chemical shifts denote downfield shifts with respect to standards.

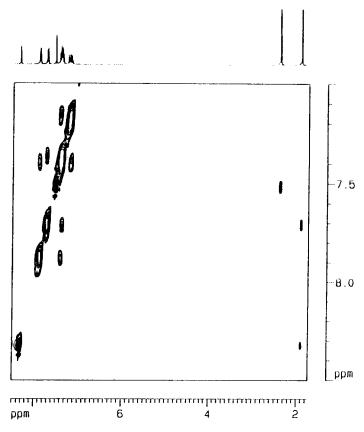


Fig. 1. NOESY spectrum of compound 4a in deuteriochloroform measured using a 1 s mixing time.

Experimental conditions of two-dimensional H,H-COSY, NOESY, H,C-COSY and H,C-COSYLR were similar to data reported previously[7]. Mixing times in NOESY spectra were 0.5 and 1 s.

ACKNOWLEDGEMENTS

This work was supported by the Grant Agency of the Czech Republic (Grant No. 203/96/0123).

REFERENCES

- 1. Mustroph, H. and Bach, G., Zeitschrift für Chemie, 25 (1985) 25.
- 2. Ernst, R. R., Bodenhausen, G. and Wokaun, A., *Principles of Nuclear Magnetic Resonance in One and Two Dimensions*. Clarendon Press, Oxford, 1987.

- 3. Hull, W., In Two-Dimensional NMR Spectroscopy. Application for Chemists and Biochemists, eds W. R. Croasmun and R. M. K. Carlson, 2nd edn. VCH, New York, 1994, Chapter 2.
- 4. Lyčka, A., Liptaj, T. and Jirman, J., Collection of Czechoslovak Chemical Communications, 52 (1987) 727.
- 5. Lyčka, A. and Šnobl, D., Collection of Czechoslovak Chemical Communications, 46 (1981) 892.
- 6. Neuhaus, D. and Williamson, M. P., The Nuclear Overhauser Effect in Structural and Conformation Analysis. VCH, New York, 1989.
- 7. Christie, R. M., Agyako, C., Mitchell, K. and Lyčka, A., Dyes and Pigments, 31 (1996) 155.
- 8. Morris, G. A. and Freeman, R., Journal of the American Chemical Society, 101 (1979) 760.